‘Computational Optimization and Applications, 4, 375-392 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Parallel Structural Optimization Applied to Bone
Remodeling on Distributed Memory Machines

SHIRISH CHINCHALKAR
Advanced Computing Research Institute, Cornell Theory Center, Cornell University, Ithaca, NY 14853

THOMAS F. COLEMAN
Computer Science Department and Center for Applied Mathematics, Cornell University, Ithaca, NY 14853

Received July 23, 1993; Revised October 12, 1994

Abstract. In this paper, we investigate parallel structural optimization methods on distributed memory MIMD
machines. We have restricted ourselves to the case of minimizing a multivariate non-linear function subject to
bounds on the independent variables, when the objective function is expensive to evaluate as compared to the linear
algebra portion of the optimization. This is the case in structural applications, when a large three-dimensional
finite element mesh is used to model the structure.

This paper demonstrates how parallelism can be exploited during the function and gradient computation as well
as the optimization iterations. For the finite element analysis, a ‘torus wrap’ skyline solver is used. The reflective
Newton method, which attempts to reduce the number of iterations at the expense of more linear algebra per
iteration, is compared with the more conventional active set method. All code is developed for an Intel iPSC/860,
but can be ported to other distributed memory machines.

The methods developed are applied to problems in bone remodeling. In the area of biomechanics, optimization
models can be used to predict changes in the distribution of material properties in bone due to the presence of an
artificial implant. The model we have used minimizes a linear combination of the mass and strain energy in the
entire domain subject to bounds on the densities in each finite element.

Early results show that the reflective Newton method can outperform active set methods when few variables are
active at the minimum.

Keywords: structural optimization, parallel FEM

1. Introduction

Structural design applications often require the solution of large optimization problems.
Designers are interested in minimizing the cost or weight of complex structures such as
automobiles and bridges. Structural optimization is moving towards larger and larger prob-
lems. Not only do these problems require a significant amount of memory, they also need
to be solved fast so as to speed up the overall design process and help designers study
different configurations. These factors make sequential machines inadequate for solving
large problems and parallelism needs to be introduced.

A popular approach for solving constrained structural optimization problems is to use an
active set method with a secant update such as BFGS [8]. But as problems get larger, active
set methods tend to require many iterations. Moreover, active set methods do not parallelize
well on distributed memory machines. For these reasons, we suggest a new approach for
solving such problems. Our approach uses the reflective Newton method {3], [4]. The
Hessian is computed exactly, but is not stored explicitly. Instead, it is stored in a product
form (as a sum of the product of several terms), and a preconditioned conjugate gradient




376 CHINCHALKAR AND COLEMAN

method is used to solve for the search directions. Typically, fewer iterations are required
and the method can be parallelized for distributed memory machines.

In the next few sections, we described in greater detail the approach used. In section 2
we consider the problem and the motivation behind our approach. Section 3 deals with the
computational techniques used in this work, and in section 4 we present the results of some
numerical experiments performed in this work.

2. Problem description

Consider structural optimization problems of the following form:

mdjn V(u(9), ¢) M
st:L<¢<U

where L and U are lower and upper bounds respectively on the vector of independent
variables, ¢. The dependent variables, u(¢), are computed by means of a finite element
analysis. The most general form of structural optimization problems contains linear and
non-linear equality and inequality constraints; we restrict ourselves to the simpler case here.

An area of application for the above formulation is bone remodeling. In some recent
work [12], the distribution of material and physical properties of the bone is predicted using
a variational model for bone reconstruction. The prediction is based on the solution of the
following optimization problem:

.M
min 2
p.t.r { U } ( )
subject to:
L,<p=<U,
L, <t U
Lr S r < Ur
where
M = mass of the structure
u = strain energy in the entire domain = % fQ g -edQ2
P = density
t = thickness
r = shape parameters
Q = structural domain
a = stress tensor
€ = strain tensor
L,, L,, L, = lower bounds on independent variables
U,, U;, U, = upper bounds on independent variables

Solving the above optimization problem helps researchers understand the changes in the
properties of human bone due to the presence of artificial implants and may ultimately lead
1o the design of better implants.




PARALLEL STRUCTURAL OPTIMIZATION 377

The Young’s modulus of the bone, E, which is used in finite element analysis, is empir-
ically related to the bone density by the relationship {12]:

E =Cp’ 3)

where C is an empirical constant.

In this multi-objective optimization problem, a linear combination of the two objective
functions is minimized. The objective function we use is ¢; M + c,U and the coefficients
c1 and ¢, are chosen suitably. In order to solve this optimization problem numerically, the
structural domain €2 is discretized into finite elements. A finite element solution gives nodal
displacements, which are used to compute the strain energy, U. The above formulation
holds for a 2-D model. 3-D finite elements do not have ‘thickness’; shape variables play
the role of thickness in 3-D models. In [12], 2-dimensional problems were analyzed; we
would like to study the applicability of the variational method of bone remodeling for
3-dimensional problems.

The applicability of the optimization problem (1) is not limited to bone remodeling. Prob-
lems arising from diverse structural applications also have similar characteristics. In struc-
tural design problems, the designer is interested in choosing model parameters (¢) in order
to minimize an objective function such as cost or weight. Some important common char-
acteristics of these optimization problems are:

e The objective function is a simple function of structural response, along with the input
parameters (x) and the design variables (model parameters, ¢).

e The structural response is a complex function of the design variables and the input
parameters, and requires a finite element analysis.

e The input parameters are independent of the model parameters.

e The objective function, ¥ (y(¢, x), ¢), is a measure of the performance of the structural
system.

e Objective function evaluation is significantly more expensive than the linear algebra
portion of the optimization algorithm.

Realistic finite element models of physical systems have several thousand degrees of free-
dom and the solution of such large problems is computationally intensive. During the
optimization process, several hundred such functions may have to be evaluated. In order to
speed up the optimization process parallelism can be used.

In this work, the reflective Newton method [3], [4] is used for the non-linear optimization.
Among its advantages are fast convergence, ease of parallelization, and relatively few
function evaluations at the expense of more linear algebra per iteration. In contrast, active
set methods such as NPSOL [8] may require several hundred iterations in some cases
and are also difficult to parallelize. For example, the quadratic programming subproblem in
an active set method requires O (n?) work for updating a Cholesky factorization every time
a variable is added or removed from the active set. It is difficult to obtain high speedups
for these updates on a message passing machine. On the other hand, the reflective Newton
method requires a single solution of a system of equations at every iteration and is hence
easier to parallelize.

The reflective Newton method generates strictly feasible points—global and quadratic
convergence results are established in [4]. The method works as follows. In iteration k a
descent direction is determined. This descent direction is the first leg of a piecewise linear



378 CHINCHALKAR AND COLEMAN

A Model Interior-reflective Method

Choose qb“) in the strict interior of the feasible region.
Fork=1,2,...

1. Determine an initial descent direction s®) for Y at (b(k). Determine a “‘reflective
path” p(k)(a) as described in [3].

2. Perform an approximate piecewise line minimization of ¢(¢(k) + p®a)),
with respect to «, to determine an acceptable stepsize a®.

3. ¢(k+1) = ¢(k) + p(k)(a(k)).

Figure 1. A model interior-reflective algorithm.

“reflective path” which is searched to locate a sufficiently improved point. Details are given
in [3]. A model interior-reflective method is described in Fig. 1.

How is the descent direction determined? The idea, fully described in [3], is to solve a
2-dimensional trust region subproblem. The subspace chosen, at iteration k, is defined by
the scaled gradient direction and an approximate Newton step—in our case the approximate
Newton step is defined by a conjugate gradient process.

The reflective Newton method is relatively new; however, initial experiments indicate
that this approach generally requires relatively few (serial) major iterations to achieve good
accuracy.

This research is carried out on a 32 processor Intel iPSC/860 hypercube with 8 Mbytes of
local memory per processor. The processors of the iPSC/860 are connected by ethernet with
peak communication speed of 2.8 Mbytes/second. Processors exchange data by sending
and receiving messages. The nodes of the hypercube are attached to a front-end called the
System Resource Manager {SRM) which is used to load the program on the nodes. Instead
of the SRM, a Sun workstation can also be used as a front-end for the hypercube. In this
work, some of the code ran on the front-end, but the computationally intensive portions ran
on the hypercube. The reason for using the Sun front-end is two-fold:

e Since the active set method (NPSOL) is difficult to parallelize, it is run sequentially.
However, the memory on each node of the hypercube is too small to have NPSOL
running on it. Therefore, NPSOL is run on the Sun front-end.

e Proprietary code such as Matlab {9] used with the reflective Newton method is not
available in source form and hence needs to be run on the Sun front-end for which a
compiled executable is available.

The Portable Instrumented Communication Library (PICL) is used for message-passing
[7]. Use of PICL ensures portability across several distributed memory platforms.

The next few sections describe in greater detail the approach used for solving (1). We have
further restricted ourselves to problems where the independent variables are the densities in
individual finite elements, i.e., we have not considered variation in the shape of the domain.
During some of the discussions, we will use the objective function in Eq. (2), although the
techniques are applicable with minor modifications to other objective functions as well.



PARALLEL STRUCTURAL OPTIMIZATION 379

3. Computational methods

We have introduced parallelism during various stages of the computation. The objective
function evaluation, which includes the finite element analysis, is carried out entirely on the
hypercube, along with the calculation of the gradient and the Hessian. The matrix vector
products needed for the conjugate gradient method are also computed in parallel.

Two important issues in distributed memory programming are data distribution and load
balancing. For structural optimization, information such as nodal coordinates and element
connectivity is made available to all processors. Moreover, the torus wrap mapping which
is used for storing the stiffness matrix ensures uniformity of data distribution. The element
stiffness matrices are needed during the calculation of the gradient and the Hessian and are
stored in a distributed fashion with each processor storing the stiffness matrices of a few
elements. Load balancing among processors is also achieved easily because of the use of a
torus wrap skyline factorization instead of other methods such as domain decomposition.

When NPSOL is used to solve (2), only the objective function and gradient is evaluated
in parallel on the hypercube. The rest of the active set method runs on the Sun front-end.

3.1. Parallel finite element analysis

In structural finite element analysis, the following large sparse system of linear equations
needs to be solved:

Ku=f 4)

where K is the global stiffness matrix, u is the vector of nodal displacements and f is
the vector of externally applied nodal loads. We have considered only direct methods for
solving the above equation because, as detailed in the next few sections, several systems of
equations with the same coefficient matrix, K, must be solved.

In this work, the matrix K is stored in a skyline form and is distributed among the
processor using a torus wrap mapping [6]. In the torus wrap mapping, the processors are
logically arranged in a 2-dimensional grid of size r x ¢, where r is the number of rows in
the processor grid, ¢ is the number of columns, and p = rc is the number of processors.
Each processor is identified uniquely by a tuple (i, j),i = 0..r — 1, j = 0..c — 1. For
any matrix, the entry (k, [) of the matrix is stored on processor (kmodr, Imodc). In case
of skyline storage, only those entries of the lower triangular portion of K that are inside
the skyline are stored according to the above formula. Within each processor, the entries
are stored by rows. The torus wrap mapping increases the communication bandwidth and
hence reduces the communication cost. The more common row and column wrap mappings
are special cases of the torus wrap mapping. However, column based methods are faster for
solution of equations as the communication bandwidth is unimportant because message size
is small. When the preconditioned conjugate gradient method is used with the reflective
Newton method, several systems of equations need to be solved for the same factorization
of K. In this case, a column based mapping for K is used. When NPSOL is used to solve
(1), factorization time dominates and hence the torus wrap mapping is used with NPSOL.

Assembly of the global stiffness matrix can be performed independently by all proces-
sors; each processor is responsible for computing its portion of K. Global stiffness matrix
assembly is low order work and can be done with little redundant computation.




380 CHINCHALKAR AND COLEMAN

Calculation of stresses and strains in each element can be performed in parallel without
interprocessor communication. Therefore, the only message passing required is during the
factorization and solution of equations and during the initial data distribution.

The parallel multifrontal method (e.g., [11] can also be used for solving the finite element
system of Eq. (4). For the range of problems that could be solved on a 32 processor iPSC/860,
the multifrontal method was found to be marginally faster than the skyline solver, but it
required significantly more intermediate storage. Moreover, unlike the skyline solver, the
storage requirements were not evenly balanced across all processors. Hence the multifrontal
method could not be used to solve large problems.

3.2.  Calculation of gradient

The gradient of the objective function with respect to the independent variable is given by
the following formula:
d L af oK

3¢ 3¢ i 0

where V¥ is the same as v/, but with u and ¢ regarded as independent variables and A is an
adjoint vector that can be computed from:

ayT
ou

KA = 6)

Since K is already factored for solving (4), A can be computed by solving a system of
equations given the Cholesky factor of K. If the ¢;’s are the densities in individual finite

elements, -{5 is zero. The term 2 l¢(> u is given by the following formula:
0K [BK K 0K ] o
—u=|—u —u--- u
o¢ 01 9 d¢n,

where

a¢, Z(m ) ®

Jj=1

and n is the number of independent variables. The summation ‘Z'};] ’ corresponds to an
assembly of individual element vectors (%giu) into a global vector. When each ¢; is the

density in exactly one finite element, - d ¢ is non-zero only when i = j and therefore 3;
is easy to compute. Calculation of the gradient therefore requires a solution of a system of
equations with known factorization and several small matrix-vector products that can be

performed independently.
3.3, The reflective Newton method
In this research, the reflective Newton method is used because it requires relatively few

iterations (and function evaluations) for convergence and can be parallelized relatively
easily. It is compared with an active set method with quasi Newton updates (NPSOL).



PARALLEL STRUCTURAL OPTIMIZATION 381

X =u
27 72
. =
- I
< —
<
s
x =1
2 2

Figure 2. Line search along a reflective piecewise linear path.

Unlike NPSOL, the reflective Newton method can take advantage of an indefinite Hessian
by using a direction of negative curvature. Details can be found in {[3] and [4].

The reflective Newton method generates a sequence of strictly feasible iterates that ulti-
mately converges at a quadratic rate to a local solution. The search direction, s, used in the
line search is computed by solving the following trust region subproblem:

1
min {sTDlg + 5sTAs: ID'sllz < A,s € S} 9)

where
A=DiHD, + D, (10)

and D; and D, are known diagonal matrices, H is the Hessian of the objective function,
and g is the gradient. We limit the search space to a 2-dimensional subspace, S, defined by
the scaled gradient, D, g, and either the Newton’s step or a direction of negative curvature.
The latter are obtained by applying the method of preconditioned conjugate gradients to

ASN =b (11)
where
b= —-Dg (12)

From a given iterate, an approximate line search is performed along a piecewise linear
path. The first leg of this path is the descent direction obtained by solving (9).

Whenever a constraint is encountered, the search direction is ‘reflected’ against this
constraint. Figure 2 shows an example of a reflective path in 2 dimensions.

The reflective Newton method requires the Hessian or an approximation to it. One of the
following approaches can be used:

e A quasi Newton approximation can be used, but this ignores any negative curvature the
objective function might have.




382 CHINCHALKAR AND COLEMAN

e A finite difference approximation can be computed, but it can be very expensive.

e The Hessian can be computed analytically (see section 3.4) and is cheaper than finite
differences but is still expensive.

e The Hessian can be computed in a ‘product form’ (a sum of the product of several terms)
and can be used to compute Hx for arbitrary vectors x and the preconditioned conjugate
gradient method can be used to solve (11).

3.4. Hessian of the objective function

The Hessian is given by:

32 2.7 2.7 2.7
Helhl=—Vt -2V 0V u 0¥
3¢,‘8¢j 8¢,3¢] 8¢;8u 8¢] 8¢>_i3u 3¢,
ov 9% au\’ 0%y ou .
373¢,~a¢,»+('5q3?> W 38, 13

It can be shown that the Hessian is dense. Calculation of the Hessian requires calculation
of 3—;‘) This is expensive to compute because for each i, the following equation needs to be
solved:

ou 0K

Even though the factorization of K has been computed earlier, calculation of gﬁ requires
the solution of ny systems of equations (where ny, is the number of independent variables).
Moreover, % needs to be stored as it is needed for computing various terms in the formula
for the Hessian. Therefore, this approach requires a significant amount of memory.

3.5.  The preconditioned conjugate gradient method

The preconditioned conjugate gradient method (PCG) can be used to solve (11). This
approach is preferred when the Hessian is not known explicitly, but the product Hx, for
any vector x, can be computed cheaply. As shown in section 3.6, this is indeed the case
here. Since PCG is used only to compute a search direction, an accurate solution is not
necessary. Therefore, PCG is used with a very loose convergence criterion so as to reduce
the number of iterations. Solving Ax = b is equivalent to minimizing Q = ]ExTAx —bTx.
Convergence is based on the criterion [10]:

k(Qr — Oi-1) <a (15)
(Qk — Qo)
where k is the iteration number, Q; = %kaAxk — b7 xy, x; is the value of x at iteration k,
and xo = 0. a 1s chosen to be 0.1. The above convergence criterion is equivalent to stopping
when the reduction in Q) is a small fraction of the average reduction in Q per iteration.
A diagonal preconditioner whose entries approximate the diagonal entries in H is used.
Since H is not known explicitly, 3 random vectors, x™, x® x®  are chosen and the
product Hx®¥, i =1,2,3 is computed. Let [x y z] denote a matrix with the vectors




PARALLEL STRUCTURAL OPTIMIZATION 383

k=0;20=0;7r0=0— Azg; Qo = 0; kmazr =n/2;
while (k < kmaz)
Solve Mz, = ri

k=k+1

if (k =1) then
dl =20

else

Bk = ri_yzk-1/ri_q2k-2
dr = 2k-1 + Bidi-1

endif

v = df Adi

if (7x < 0) then
sy = dy
return

endif

ok = Ti_12k-1/ 7k

Tk = Tg—1 + ard

Tk = Tk—1 — apAdy

Qk = O5.’L‘ZA:L‘k - bT:Ek

if (k(Qx — Qk-1)/Qx < 0.12 then
SN = Tk
return

endif

end

Figure 3. The preconditioned conjugate gradient algorithm.

x,y, and z as its three columns. A diagonal approximation to H, viz. H,is computed by
solving the following least squares problem:

min “]:][x(l)x(z)x(?*)] _ H{x(l)x(?-)x(i*)]np (16)
and the preconditioner, M, is set to
M = DHD, + D, a7

If a diagonal element M; happens to be negative, M; is set to 1.
The algorithm used for PCG is shown in Fig. 3. If dkTAdk 18 less than 0, the matrix A is
indefinite and d;, a direction of negative curvature, is returned.

3.6. Hessian in product form

As mentioned earlier, if H can be computed in a product form, and if the product Hx can be
computed cheaply for any vector x, then PCG can be used to solve (11). Terms in Eq. (13)
can be computed as follows:




384 CHINCHALKAR AND COLEMAN

a2y
0¢;0¢;

This term is easy to compute because ¥ is a simple function of ¢. When each ¢; is the
density in a single finite element, this matrix is diagonal.

82121 au
oudp; 0¢;
3y u 3%y 9K
Vo ou_ 9V K1 —u (18)
duop; 0¢; oudg a¢
3%y
=2V k-ig (19)
oudg
The matrices A and (.f:fd) are sparse and are computed on an element-by-element basis.
When forming the product %K‘] Ax, calculation of K ~!(Ax) requires the solution of

one system of equations with the Cholesky factor of X computed in (4).

02y du
dudp; g

This term is the transpose of the previous term. Using the objective function in Eq. (2),
this term reduces to —C, AT K1 A which is symmetric and hence is the same as the pre-
vious term. If a different objective function is used, this term would have to be computed
and would also require a solution of one system of equations with known factorization
of the coefficient matrix.

Y 0%u

—

du  Opidp,

Equation (4) can be differentiated twice with respect to ¢ and substituted in the above
expression to obtain:

7 2 7 2
S S TR ) e
ou 0¢;d¢; ou dp; 0¢; 0¢p; 0¢; 03909,
;[ 9K ou 3K du 92K ,
=AN|l-— — - — — = 21
a¢l a¢j a¢j 8¢l ad),ad)]
: 9K
Since A = G Us
0K 9 K
AT ATl k-1g (22)

ap 0 ¢

When multiplying by x, the term K ~! Ax computed earlier can be reused. Similarly, the
second term is equivalent to AT%K ~!A. When multiplying by x, another system of
equations K ~'(Ax) needs to be solved. The last term is non-zero only if i = j.




PARALLEL STRUCTURAL OPTIMIZATION 385

ou\' 9%y  du
o .
o0pi ) du®> 9¢;
This can be written as AT K "' BK~' A, where B = %Zi B is computed by the following
formula:

3%y
B=——
du? (23)
32
—_ T
-z (clM L Keu) (24)
=G )Y K. (25)

where the summation is over all bone elements. B is thus equivalent to the collection of
element stiffness matrices. B is not computed explicitly; the element stiffness matrices
are stored separately before assembly of K. K ~! Ax has been computed earlier and can
be reused. The above product therefore requires the solution of one system of equations,
namely, K "1 (BK ~! Ax).

In summary, the cost of computing H in product form is negligible and the cost of computing
Hx is roughly equivalent to that of solving 3 sparse systems of equations (with known
factorization of the coefficient matrix).

When the above calculations are performed in parallel on the hypercube, the matrices
such as %%u and %—A are computed independently in parallel and are stored and used on
an element-by-element basis.

On the Intel iPSC/860, the time spent on sending a message of n bytes from a processor to
its neighbor can be approximated by 75 + 0.4n microseconds {5]. The startup time (latency)
of 75 microseconds has a noticeable effect on the overall performance when the messages are
small. This is the case during forward elimination and back substitution. Since calculation
of Hx requires 3 such solutions, it can be expensive. However, by solving 2 sets of equations,
K~1Ax and K~ Ax, simultaneously, the speed of calculation of Hx can be increased.

4. Problems and results

As mentioned in an earlier section, the methods developed in this paper are applied to
problems in bone remodeling. Figure 4 shows a steel stem (implant) in a fractured bone.
The stiffness of steel is much greater than that of bone. As aresult, the steel implant carries
most of the applied load. This ultimately causes the bone to atrophy as shown in Fig. 4(a) and
can result in loosening of the implant. The presence of the implant thus has an undesirable
effect on the bone. It would be beneficial to see if this model can predict the actual behavior
correctly. To analyze this problem, a finite element model with 844 elements is constructed
(see Fig. 4(b)). In Table 1 we provide details of the problem. Different values of ¢; and
¢, are used and the optimization is carried out. The predicted density distribution in the
bone is shown in Fig. 5. It can be seen that this model predicts that a significant portion
of the bone would atrophy. Since the implant is very stiff and since a linear finite element
analysis is performed, load transfer from the bone to the stem takes place at the top of the
stem and results in negligible stresses at the bottom of the bone. If a non-linear analysis




386 CHINCHALKAR AND COLEMAN

R i

& (b) Finite element mesh for bone re-

L\
modeling problem in Fig. 3. Only a
quarter of the physical domain is mod-
(a) Fractured bone supported by a steel implant. eled.
Figure 4.

Fieure 5. Ontimal densitv distribution for the nrohlem in Fio 4




PARALLEL STRUCTURAL OPTIMIZATION

Tuble 1.

Tuble 2.

Description of bone remodeling problems.

Problem 1 Problem 2

n 600 720

Relems 844 780

Negns 11496 11082

C1 1 1

I 1000 25

C 2875 2875

1 0.05 0.05

u 2 2

Xstart 1 ]

Results of NPSOL for problems in Table 1.
Problem 1 Problem 2

# Processors 16 16
# Major iter. 5 17
# Function eval. 6 3]
# Active 600 719
Real time (sec) 1087 4653
Fopt 2.390043 x 10 9.949413 x 10

ALY

ALY

Onmg

D299

Figure 6. Canine bone and plate: the plate is attached to the bone by screws.

87

using interface elements had been performed, the load transfer would have taken place over

a longer region and such a large portion of the bone would not have atrophied. Tables 2

and 3 show the performance of NPSOL and the reflective Newton method on the above
problem. In this case, since most of the variables are at their bounds at the solution, NPSOL
converges fast and the reflective Newton method takes longer.

The second example is that of a screw hole in a femur. Sometimes, a broken bone is
supported by metallic plates affixed by screws (Fig. 6). After a few weeks, when the bone




388 CHINCHALKAR AND COLEMAN

Tuble 3. Results of reflective Newton method on problems in Table 1.

Problem 1 Problem 2
# Processors 16 16
# Major iter 22 24
# PCG iter 50 57
# Function eval 25 26
# Hx 309 353
Real time (sec) 6459 7398
fopt 2.391010 x 10* 9.058229 x 103
1500.
| i -
- —

Figure 7. Finite element mesh for bone remodeling problem in Fig. 6.

heals, the plate and screws are removed. The presence of holes in the bone caused by the
removal of screws results in stress concentration. Experiments performed by researchers
on canine bones [1] show that after a few weeks the bone properties around the hole change
in order to eliminate stress concentration and the bones become as strong as the original
bones without holes. To analyze this problem, a finite element model with 780 elements
is constructed Fig. 7). In Table 1 we provide details of the problem. In Tables 2 and 3 the
performances of NPSOL and the reflective Newton method on this problem are detailed.
Figure 8 shows the distribution of density of bone after reconstruction. The results are
not entirely realistic because the model predicts some zero density areas which are not
observed in practice. This may be because the shape of the domain is not allowed to vary.
In experiments on canine bones, it was observed that the bone thickened near the hole.
In [12], when the thickness of the 2-D model was allowed to vary, realistic results were
obtained. In the 3-D case, the bone also became thinner because the stresses on the outer
surface are greater than the stresses on the inner surface. However, in practice, the bone
does not become thin.




PARALLEL STRUCTURAL OPTIMIZATION 389

Tuble 4. Breakup of CPU time (percent) for the reflective Newton method on problems in Table 1.

Problem 1 Problem 2
Line search 274 272
Conjugate gradients 16.5 157
Function evaluation 49.7 514
Gradient evaluation 1.7 1.5
Other 4.7 42

2.00

182 |

147

.408

227

.0500

Figure 8.  Optimal density distribution for the problem in Fig. 7.

In Table 4 we break down the time taken during different stages of the reflective Newton
method. It can be seen that the time spent on solving for the search direction and the line
search is quite significant. Function evaluations take up approximately half of the total
time. However, it should be noted that the floating point speed during function evaluation
is much higher than the floating point speed during PCG and line search. This is because
function evaluation requires factorization, whereas PCG requires solution of a system of
equations with a pre-computed factorization.

Some models are constructed to illustrate possible problems with the active set method
and why the reflective Newton method might be better in these circumstances. Table 5
shows two cases. For each case, models with different numbers of elements are constructed.
When few variables are active at the solution, NPSOL is found to perform poorly, requiring
more than 100 iterations and more than 100 function evajuations. On the other hand, the
reflective Newton method requires significantly fewer iterations and function evaluations




392 CHINCHALKAR AND COLEMAN

References

N

. AH. Burstein, J.D. Currey, V.H. Frankel, K.G. Heiple, P. Lunseth, and J.C. Vessely, “Bone strength: The

effect of screw holes,” Journal of Bone and Joint Surgery, Vol. 54-A, No. 6, pp. 1143-1156, 1972.

. D.R. Carter and W.C. Hayes, “The Compressive Behavior of Bone as a Two-Phase Porous Structure,” The

Journal of Bone and Joint Surgery, Vol. 59-A, pp. 954-962, 1977.

. TF. Coleman and Y. Li, “A reflective Newton method for minimizing a quadratic function subject to bounds

on some of the variables,” Technical Report CTC92TR111, Cornell Theory Center, Cornell University, Ithaca,
NY, 1992 (to appear in SIAM Journal on Optimization).

. T.F. Coleman and Y. Li, “On the convergence of reflective Newton methods for large-scale nonlinear mini-

mization subject to bounds,” Mathematical Programming, Vol. 67, pp. 189-224, 1994,

. T.H. Dunigan, “Performance of the Intel iPSC/860 and Ncube 6400 Hypercubes,” ORNL/TM-11790, Oak

Ridge National Laboratory, 1991.

. R.A. van de Geijn, “Massively paralle] LINPACK benchmark on the Intel Touchstone DELTA and iPSC/860

systems,” Progress Report, Department of Computer Sciences, University of Texas, Austin, Texas, 1991.

. G.A. Geist, M.T. Heath, B.W. Peyton, and P.H. Worley, “A Users’ Guide to PICL: A Portable Instrumented

Communication Library,” ORNL/TM-11616, Oak Ridge National Laboratory, 1991.

PE. Gill, W. Murray, M.A. Saunders, and M.H. Wright, “User’s guide for NPSOL {version 4.0): A FOR-
TRAN package for nonlinear programming,” Technical Report SOL 86-2, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1986.

The Math Works, Inc., PRO-MATLAB for Sun workstations, 1990.

S.G. Nash and A. Sofer, “Assessing a search direction within a truncated-Newton method,” ‘Operations
Research Letters, Vol. 9, No. 4, pp. 219-221, 1990.

. A.Pothenand C. Sun, “A distributed multifrontal algorithm using clique trees,” Technical Report CTC91TR 72,

Advanced Computing Research Institute, Cornell Theory Center, Cornell University, 1991.
G. Subbarayan, “Bone Construction and Reconstruction: A Variational Model and its Applications,” Ph.D.
Thesis, Department of Mechanical and Aerospace Engineering, Cornell University, 1990.



